library(effectsize)To add support for you model, create a new .anova_es() method function. This functions should generally do 3 things:
The input data frame must have these columns: - Parameter (char) - The name of the parameter or, more often, the term. - Sum_Squares (num) - The sum of squares. - df (num) - The degrees of freedom associated with the Sum_Squares. - Mean_Square_residuals (num; optional) - if not present, is calculated as Sum_Squares / df. (Any other column is ignored.)
And exactly 1 row Where Parameter is Residual.
Optionally, one of the rows can have a (Intercept) value for Parameter.
An example of a minimally valid data frame:
min_aov <- data.frame(
Parameter = c("(Intercept)", "A", "B", "Residuals"),
Sum_Squares = c(30, 40, 10, 100),
df = c(1, 1, 2, 50)
)Pass the data frame to .es_aov_simple():
.es_aov_simple(
min_aov,
type = "eta", partial = TRUE, generalized = FALSE,
include_intercept = FALSE,
ci = 0.95, alternative = "greater",
verbose = TRUE
)> Parameter Eta2_partial CI CI_low CI_high
> 1 A 0.286 0.95 0.12 1
> 2 B 0.091 0.95 0.00 1
The output is a data frame with the columns: Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: partial, generalized, ci, alternative, anova_type (NA or NULL), approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output.
(e.g., aovlist models.)
The input data frame must have these columns:
Group (char) - The strataParameter (char)Sum_Squares (num)df (num)Mean_Square_residuals (num; optional)And exactly 1 row per Group Where Parameter is Residual.
Optionally, one of the rows can have a (Intercept) value for Parameter.
An example of a minimally valid data frame:
min_aovlist <- data.frame(
Group = c("S", "S", "S:A", "S:A"),
Parameter = c("(Intercept)", "Residuals", "A", "Residuals"),
Sum_Squares = c(34, 21, 34, 400),
df = c(1, 12, 4, 30)
)Pass the data frame to .es_aov_strata(), along with a list of predictors (including the stratifying variables) to the DV_names argument:
.es_aov_strata(
min_aovlist, DV_names = c("S", "A"),
type = "omega", partial = TRUE, generalized = FALSE,
ci = 0.95, alternative = "greater",
verbose = TRUE,
include_intercept = TRUE
)> Group Parameter Omega2_partial CI CI_low CI_high
> 1 S (Intercept) 0.568 0.95 0.21 1
> 2 S:A A -0.042 0.95 0.00 1
The output is a data frame with the columns: Group, Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: partial, generalized, ci, alternative, approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output.
When sums of squares cannot be extracted, we can still get approximate effect sizes based on the F_to_eta2() family of functions.
The input data frame must have these columns:
Parameter (char)F (num) - The F test statistic.df (num) - effect degrees of freedom.t col instead, in which case df is set to 1, and F is t^2).df_error (num) - error degrees of freedom.Optionally, one of the rows can have (Intercept) as the Parameter.
An example of a minimally valid data frame:
min_anova <- data.frame(
Parameter = c("(Intercept)", "A", "B"),
F = c(4, 7, 0.7),
df = c(1, 1, 2),
df_error = 34
)Pass the table to .es_aov_table():
.es_aov_table(
min_anova,
type = "eta", partial = TRUE, generalized = FALSE,
include_intercept = FALSE,
ci = 0.95, alternative = "greater",
verbose = TRUE
)> Parameter Eta2_partial CI CI_low CI_high
> 1 A 0.17 0.95 0.023 1
> 2 B 0.04 0.95 0.000 1
The output is a data frame with the columns: Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: partial, generalized, ci, alternative, approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output, and optionally the approximate attribute, and return the output.
Let’s fit a simple linear model and change its class:
mod <- lm(mpg ~ factor(cyl) + am, mtcars)
class(mod) <- "superMODEL"We now need a new .anova_es.superMODEL function:
.anova_es.superMODEL <- function(model, ...) {
# Get ANOVA table
anov <- suppressWarnings(stats:::anova.lm(model))
anov <- as.data.frame(anov)
# Clean up
anov[["Parameter"]] <- rownames(anov)
colnames(anov)[2:1] <- c("Sum_Squares", "df")
# Pass
out <- .es_aov_simple(anov, ...)
# Set attribute
attr(out, "anova_type") <- 1
out
}And… that’s it! Our new superMODEL class of models is fully supported!
eta_squared(mod)> # Effect Size for ANOVA (Type I)
>
> Parameter | Eta2 (partial) | 95% CI
> -------------------------------------------
> factor(cyl) | 0.76 | [0.61, 1.00]
> am | 0.12 | [0.00, 1.00]
>
> - One-sided CIs: upper bound fixed at (1).
eta_squared(mod, partial = FALSE)> # Effect Size for ANOVA (Type I)
>
> Parameter | Eta2 | 95% CI
> ---------------------------------
> factor(cyl) | 0.73 | [0.57, 1.00]
> am | 0.03 | [0.00, 1.00]
>
> - One-sided CIs: upper bound fixed at (1).
omega_squared(mod)> # Effect Size for ANOVA (Type I)
>
> Parameter | Omega2 (partial) | 95% CI
> ---------------------------------------------
> factor(cyl) | 0.73 | [0.56, 1.00]
> am | 0.08 | [0.00, 1.00]
>
> - One-sided CIs: upper bound fixed at (1).
# Etc...effectsize::standardize.default() should support your model if you have methods for:
{insight} functions.update() method that can take the model and a data frame via the data = argument.Or you can make your own standardize.my_class() function, DIY-style (possibly using datawizard::standardize.data.frame() or datawizard::standardize.numeric()). This function should return a fiffed model of the same class as the input model.
standardize_parameters.default() offers a few methods of parameter standardization:
method = "refit" all you need is to have effectsize::standardize() support (see above) as well as parameters::model_parameters().